stochgqn Documentation

David Cortes

Apr 15, 2021






Contents:

1 Indices and tables
Python Module Index

Index

17

19

21







stochqn Documentation

class SOQON (x0, grad_fun, obj_fun=None, hess_vec_fun=None, pred_fun=None, batches_per_epoch=25,

SQN

step_size=0.001, decr_step_size="auto’, shuffle_data=True, random_state=1, nepochs=25,
valset_frac=None, tol=0.1, callback_epoch=None, callback_iter=None, kwargs_cb={},
verbose=True, mem_size=10, bfgs_upd_freq=20, min_curvature=0.0001, y_reg=None,
use _grad_diff=False, check_nan=True, nthreads=-1, use_float=False)

optimizer

Optimizes an empirical (convex) loss function over batches of sample data.

Parameters
* x0 (array (m, )) — Initial values of the variables to optimize (refered hereafter as x’).

» grad_fun (function(x, X, y, sample_weight, **kwargs) —> array(m, )) — Function that cal-
culates the empirical gradient at values ‘x’ on data ‘X’ and ‘y’. Note: output must be
one-dimensional and with the same number of entries as ‘x’, otherwise the Python session
might segfault. (The extra keyword arguments are passed in the ‘fit’ method, not here)

e obj_fun (function(x, X, y, sample_weight, **kwargs) —> float) — Function that calculates
the empirical objective value at values ‘x’ on data ‘X’ and ‘y’. Only used when using a
validation set (‘valset_frac’ not None, or ‘valset’ passed to fit). Ignored when fitting the
data in user-provided batches. (The extra keyword arguments are passed in the ‘fit" method,
not here)

* hess_vec_fun (function(x, vec, X, y, sample_weight, **kwargs) —> array(m, )) — Function
that calculates the product of a vector the empirical Hessian at values ‘x’ on data ‘X’ and
‘y’. Ignored when using ‘use_grad_diff=True’. Note: output must be one-dimensional

and with the same number of entries as ‘x’, otherwise the Python session might segfault.

These products are calculated on a larger batch than the gradients (given by batch_size *

bfgs_upd_freq). (The extra keyword arguments are passed in the ‘fit’ method, not here)

* pred_fun (None or function(xopt, X)) — Prediction function taking as input the optimal ‘x’
values as obtained by the optimization procedure, and new observation ‘X’ on which to
make predictions. If passed, will have an additional method oLBFGS.predict(X, *args) that
calls this function with current values of ‘x’.

* batches_per_epoch (inf) — Number of batches per epoch (each batch will have the same
number of observations except for the last one which might be smaller).

* step_size (float) — Initial step size to use. (Can be modified after object is already initialized)

 decr_step_size (str “auto”, None, or function(initial_step_size, epoch) -> float) — Function
that determines the step size during each epoch, taking as input the initial step size and
the epoch number (starting at zero). If “auto”, will use 1/sqrt(iteration). If None, will use
constant step size. For ‘partial_fit’, it will take as input the number of iterations of the
algorithm rather than epoch, so it’s very recommended to provide a custom function when
passing data in user-provided batches. Can be modified after the object has been initialized
(oLBFGS.decr_step_size)

* shuffle_data (bool) — Whether to shuffle the data at the beginning of each epoch.

* random_state (inf) — Random seed to use for shuffling data and selecting validation set.
The algorithm is deterministic so it’s not used for anything else.

* nepochs (inf) — Number of epochs for which to run the optimization procedure. Might
terminate earlier if using a validation set for monitoring.

* valset_frac (float(0, 1) or None) — Percent of the data to use as validation set for early
stopping. Can also pass a user-provided validation set to ‘fit’, in which case it will be
ignored. If passing None, will run for the number of epochs passed in ‘nepochs’.

Contents:



stochqn Documentation

* tol (float) — If the objective function calculated on the validation set decrease by less than
‘tol” upon completion of an epoch, will terminate the optimization procedure. Ignored when
not using a validation set.

* callback_epoch (None or function*(x, **kwargs)) — Callback function to call at the end of
each epoch

* callback_iter (None or function*(x, **kwargs)) — Callback function to call at the end of
each iteration

* kwargs_cb (tuple) — Additional arguments to pass to ‘callback’ and ‘stop_crit’. (Can be
modified after object is already initialized)

* verbose (bool) — Whether to print messages when there is some problem during an iteration
(e.g. correction pair not meeting minum curvature).

* mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

* bfgs_upd_freq (int) — Number of iterations (batches) after which to generate a BFGS cor-
rection pair.

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* y_reg (float or None) — regularizer for ‘y’ vector (gets added y_reg * s)

» use_grad_diff (bool) — Whether to create the correction pairs using differences between
gradients instead of Hessian-vector products. These gradients are calculated on a larger
batch than the regular ones (given by batch_size * bfgs_upd_freq).

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

 nthreads (int) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be
parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables, gradient, and hessian-vector must be of this
same dtype.

References
fit (X, y, sample_weight=None, additional_kwargs={}, valset=None)
Fit model to sample data
Parameters
* X (array(n_samples, m)) — Sample data to which to fit the model.
* y (array(n_samples, )) — Labels or target values for the sample data.
» sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

« additional_kwargs (dict) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

* valset (fuple(3)) — User-provided validation set containing (X_val, y_val, sam-
ple_weight_val). At the end of each epoch, will calculate objective function on this set, and
if the decrease from the objective function in the previous epoch is below tolerance, will
terminate procedure earlier. If ‘valset_frac’ was provided and a validation set is passed,

2 Contents:



stochqn Documentation

‘valset_frac’ will be ignored. Must provide objective function in order to use a validation
set.

Returns self — This object.

Return type obj

get_x ()

Get a copy of current values of the variables
Returns x — Current variable values.

Return type array(n, )

niter

partial_fit (X, y, sample_weight=None, additional_kwargs={})

Update model with user-provided batches of data

Note: In SQN and adaQN, the data passed to all calls in partial fit will be stored in a limited-memory
container which will be used to calculate Hessian-vector products or large-batch gradients. The size of this
container is determined by the inputs ‘batch_size’ and ‘bfgs_upd_freq’ passed in the constructor call.

Note: The step size in partial fit is determined by the number of optimizer iterations rather than the
number of epochs, thus for a given amount of data, the default step size will be much smaller than when
calling ‘fit’. Recommended to provide a custom step size function (‘decr_step_size’ in the initialization),
as otherwise the step size sequence will be too small.

Parameters
* X (array(n_samples, m)) — Sample data to with which to update the model.
* y (array(n_samples, )) — Labels or target values for the sample data.
» sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

* additional_kwargs (dict) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

Returns self — This object.

Return type obj

predict (X, additional_kwargs={})

Make predictions on new data

Note: Using this method requires passing ‘pred_fun’ in the initialization.

Parameters
* X (array(n_samples, m)) — New data to pass to user-provided predict function.

 additional_kwargs (dict) — Additional keyword arguments to pass to user-provided pre-
dict function.

Contents:



stochqn Documentation

class SQN_free (mem_size=10, bfgs_upd_freq=20, min_curvature=0.0001, y_reg=None,
use_grad_diff=False, check_nan=True, nthreads=-1, use_float=False)
SQN optimizer (free mode)

Optimizes an empirical (convex) loss function over batches of sample data. Compared to class ‘SQN’, this
version lets the user do all the calculations from the outside, only interacting with the object by means of a
function that returns a request type and is fed the required calculation through methods ‘update_gradient” and
‘update_hess_vec’.

Order in which requests are made:

loop * calc_grad

... (repeat calc_grad)

if ‘use_grad_diff’:
* calc_grad_big_batch
else:

e calc_hess_vec

Parameters

* mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

* bfgs_upd_freq (int) — Number of iterations (batches) after which to generate a BFGS cor-
rection pair.

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* y_reg (float or None) — Regularizer for ‘y’ vector (gets added y_reg * s).

 use_grad_diff (bool) — Whether to create the correction pairs using differences between
gradients instead of Hessian-vector products. These gradients are calculated on a larger
batch than the regular ones (given by batch_size * bfgs_upd_freq).

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

 nthreads (inf) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be
parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables and gradient must be of this same dtype.

run_optimizer (x, step_size)
Continue optimization process after supplying the calculation requested from the last run

Continue the optimization process from where it was left since the last calculation was requested. Will in-
ternally do all the updates that are possible until the moment some calculation of function/gradient/hessian-
vector is required.

Note: The first time this is run, no calculation needs to be supplied.

Parameters

4 Contents:



stochqn Documentation

* X (array(m, )) — Current values of the variables. Will be modified in-place.

* step_size (float) — Step size for the next update (note that variables are not updated during
all runs).

Returns

request — Dictionary with the calculation required to proceed and iteration information.
Structure:

e task : stt - one of “calc_grad”, “calc_grad_same_batch” (oLBFGS w.
‘min_curvature’ or ‘check_nan’),

”calc_hess_vec” (SQN wo. ‘use_grad_diff’), ‘“calc_fun_val_batch” (adaQN w.
‘max_incr’), “calc_grad_big_batch” (SQN and adaQN w. ‘use_grad_diff’). * re-
quested_on : array(m, ) or tuple(array(m, ), array(m, )), containing the values on
which the request in “task” has to be evaluated. In the case of Hessian-vector prod-
ucts (SQN), the first vector is the values of ‘x’ and the second is the vector with
which the product is required. * info : dict(x_changed_in_run : bool, iteration_number
. int, iteration_info : str), iteration_info can be one of “no_problems_encountered”,
“search_direction_was_nan”, “func_increased”, “curvature_too_small”.

Return type dict

update_gradient (gradient)
Pass requested gradient to optimizer

Parameters gradient (array(m, )) — Gradient calculated as requested, evaluated at values given
in “requested_on”, calcualted either in a regular batch (task = “calc_grad”), same batch as
before (task = “calc_grad_same_batch” - oLBFGS only), or a larger batch of data (task =
“calc_grad_big_batch”), perhaps including all the cases from the last such calculation (SQN
and adaQN with ‘use_grad_diff=True’).

update_hess_vec (hess_vec)
Pass requested Hessian-vector product to optimizer (task = “calc_hess_vec”)

Parameters hess_vec (array(m, )) — Product of the Hessian evaluated at “requested_on”[0] with
the vector “requested_on”[1], calculated a larger batch of data than the gradient, perhaps
including all the cases from the last such calculation.

class adaON (x0, grad_fun, obj_fun=None, pred_fun=None, batches_per_epoch=25, step_size=0.1,
decr_step_size=None, shuffle_data=True, random_state=1, nepochs=25, valset_frac=None,
tol=0.1, callback_epoch=None, callback_iter=None, kwargs_cb={}, verbose=True,
mem_size=10, fisher_size=100, bfgs_upd_freq=20, max_incr=1.01, min_curvature=0.0001,

y_reg=None, scal_reg=0.0001, rmsprop_weight=None, use_grad_diff=False,
check_nan=True, nthreads=-1, use_float=False)
adaQN optimizer

Optimizes an empirical (possibly non-convex) loss function over batches of sample data.
Parameters
* x0 (array (m, )) — Initial values of the variables to optimize (refered hereafter as x’).

e grad_fun (function(x, X, y, sample_weight, **kwargs) —> array(m, )) — Function that cal-
culates the empirical gradient at values ‘x’ on data ‘X’ and ‘y’. Note: output must be
one-dimensional and with the same number of entries as ‘x’, otherwise the Python session
might segfault. (The extra keyword arguments are passed in the ‘fit’ method, not here)

e obj_fun (function(x, X, y, sample_weight, **kwargs) —> float) — Function that calculates
the empirical objective value at values ‘x’ on data ‘X’ and ‘y’. Will be ignored if passing

Contents: 5



stochqn Documentation

‘max_incr=None’ and no validation set (‘valset_frac=None’, and no ‘valset’ passed to fit).
(The extra keyword arguments are passed in the ‘fit” method, not here)

* pred_fun (None or function(xopt, X)) — Prediction function taking as input the optimal ‘x’
values as obtained by the optimization procedure, and new observation ‘X’ on which to
make predictions. If passed, will have an additional method oLBFGS.predict(X, *args) that
calls this function with current values of ‘x’.

* batches_per_epoch (inf) — Number of batches per epoch (each batch will have the same
number of observations except for the last one which might be smaller).

* step_size (float) — Initial step size to use. (Can be modified after object is already initialized)

* decr_step_size (str “auto”, None, or function(initial_step_size, epoch) -> float) — Function
that determines the step size during each epoch, taking as input the initial step size and
the epoch number (starting at zero). If “auto”, will use 1/sqrt(iteration). If None, will use
constant step size. For ‘partial_fit’, it will take as input the number of iterations of the
algorithm rather than epoch, so it’s very recommended to provide a custom function when
passing data in user-provided batches. Can be modified after the object has been initialized
(oLBFGS.decr_step_size)

* shuffle_data (bool) — Whether to shuffle the data at the beginning of each epoch.

* random_state (inf) — Random seed to use for shuffling data and selecting validation set.
The algorithm is deterministic so it’s not used for anything else.

* nepochs (intf) — Number of epochs for which to run the optimization procedure. Might
terminate earlier if using a validation set for monitoring.

* valset_frac (float(0, 1) or None) — Percent of the data to use as validation set for early
stopping. Can also pass a user-provided validation set to ‘fit’, in which case it will be
ignored. If passing None, will run for the number of epochs passed in ‘nepochs’.

* tol (float) — If the objective function calculated on the validation set decrease by less than
‘tol” upon completion of an epoch, will terminate the optimization procedure. Ignored when
not using a validation set.

* callback_epoch (None or function*(x, **kwargs)) — Callback function to call at the end of
each epoch

* callback_iter (None or function*(x, **kwargs)) — Callback function to call at the end of
each iteration

» kwargs_cb (tuple) — Additional arguments to pass to ‘callback’ and ‘stop_crit’. (Can be
modified after object is already initialized)

* verbose (bool) — Whether to print messages when there is some problem during an iteration
(e.g. correction pair not meeting minum curvature).

* mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

* fisher_size (int or None) — Number of gradients to store for calculation of the empirical
Fisher product with gradients. If passing ‘None’, will force ‘use_grad_diff’ to “True’.

* bfgs_upd_freq (int) — Number of iterations (batches) after which to generate a BFGS cor-
rection pair.

* max_incr (float or None) — Maximum ratio of function values in the validation set under
the average values of ‘x’ during current epoch vs. previous epoch. If the ratio is above this

6 Contents:



stochqn Documentation

threshold, the BFGS and Fisher memories will be reset, and ‘x’ values reverted to their pre-
vious average. If not using a validation set, will take a longer batch for function evaluations
(same as used for gradients when using ‘use_grad_diff=True’).

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* y_reg (float or None) — regularizer for ‘y’ vector (gets added y_reg * s)

* scal_reg (float) — Regularization parameter to use in the denominator for AdaGrad and
RMSProp scaling.

* rmsprop_weight (float(0,1) or None) — If not ‘None’, will use RMSProp formula instead
of AdaGrad for approximated inverse-Hessian initialization. (Recommended to use lower
initial step size + passing ‘decr_step_size’)

» use_grad_diff (bool) — Whether to create the correction pairs using differences between
gradients instead of Fisher matrix. These gradients are calculated on a larger batch than
the regular ones (given by batch_size * bfgs_upd_freq). If ‘True’, fisher_size will be set to
None, and empirical Fisher matrix will not be used.

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

 nthreads (inf) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be
parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables and gradient must be of this same dtype.

References
fit (X, y, sample_weight=None, additional_kwargs={}, valset=None)
Fit model to sample data
Parameters
* X (array(n_samples, m)) — Sample data to which to fit the model.
* y (array(n_samples, )) — Labels or target values for the sample data.
» sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

* additional_kwargs (dicr) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

 valset (tuple(3)) — User-provided validation set containing (X_val, y_val, sam-
ple_weight_val). Atthe end of each epoch, will calculate objective function on this set, and
if the decrease from the objective function in the previous epoch is below tolerance, will
terminate procedure earlier. If ‘valset_frac’ was provided and a validation set is passed,
‘valset_frac’ will be ignored. Must provide objective function in order to use a validation
set.

Returns self — This object.
Return type obj

get_x ()
Get a copy of current values of the variables

Returns x — Current variable values.

Contents: 7



stochqn Documentation

Return type array(n, )
niter

partial_fit (X, y, sample_weight=None, additional_kwargs={})
Update model with user-provided batches of data

Note: In SQN and adaQN, the data passed to all calls in partial fit will be stored in a limited-memory
container which will be used to calculate Hessian-vector products or large-batch gradients. The size of this
container is determined by the inputs ‘batch_size’ and ‘bfgs_upd_freq’ passed in the constructor call.

Note: The step size in partial fit is determined by the number of optimizer iterations rather than the
number of epochs, thus for a given amount of data, the default step size will be much smaller than when
calling ‘fit". Recommended to provide a custom step size function (‘decr_step_size’ in the initialization),
as otherwise the step size sequence will be too small.

Parameters
* X (array(n_samples, m)) — Sample data to with which to update the model.
* y (array(n_samples, )) — Labels or target values for the sample data.
» sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

« additional_kwargs (dict) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

Returns self — This object.
Return type obj

predict (X, additional_kwargs={})
Make predictions on new data

Note: Using this method requires passing ‘pred_fun’ in the initialization.

Parameters
* X (array(n_samples, m)) — New data to pass to user-provided predict function.

« additional_kwargs (dict) — Additional keyword arguments to pass to user-provided pre-
dict function.

class adaQN_free (mem_size=10, fisher_size=100, bfgs_upd_freq=20, max_incr=1.01,

min_curvature=0.0001, scal_reg=0.0001, rmsprop_weight=None, y_reg=None,

use_grad_diff=False, check_nan=True, nthreads=-1, use_float=False)
adaQN optimizer (free mode)

Optimizes an empirical (perhaps non-convex) loss function over batches of sample data. Compared to class
‘adaQN’, this version lets the user do all the calculations from the outside, only interacting with the object
by means of a function that returns a request type and is fed the required calculation through methods ‘up-
date_gradient’ and ‘update_function’.

Order in which requests are made:

loop * calc_grad

Contents:



stochqn Documentation

... (repeat calc_grad)

if max_incr > 0:
e calc_fun_val batch
if ‘use_grad_diff’:
e calc_grad_big_batch (skipped if below max_incr)

Parameters

* mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

* fisher_size (int or None) — Number of gradients to store for calculation of the empirical
Fisher product with gradients. If passing ‘None’, will force ‘use_grad_diff’ to “True’.

* bfgs_upd_freq (int) — Number of iterations (batches) after which to generate a BFGS cor-
rection pair.

* max_incr (float or None) — Maximum ratio of function values in the validation set under
the average values of ‘x’ during current epoch vs. previous epoch. If the ratio is above this
threshold, the BFGS and Fisher memories will be reset, and ‘x’ values reverted to their pre-
vious average. If not using a validation set, will take a longer batch for function evaluations
(same as used for gradients when using ‘use_grad_diff=True’).

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* scal_reg (float) — Regularization parameter to use in the denominator for AdaGrad and
RMSProp scaling.

* rmsprop_weight (float(0,1) or None) — If not ‘None’, will use RMSProp formula instead
of AdaGrad for approximated inverse-Hessian initialization.

* y_reg (float or None) — Regularizer for ‘y’ vector (gets added y_reg * s).

» use_grad_diff (bool) — Whether to create the correction pairs using differences between
gradients instead of Fisher matrix. These gradients are calculated on a larger batch than
the regular ones (given by batch_size * bfgs_upd_freq). If ‘True’, fisher_size will be set to
None, and empirical Fisher matrix will not be used.

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

* nthreads (inf) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be
parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables and gradient must be of this same dtype.

run_optimizer (x, step_size)
Continue optimization process after supplying the calculation requested from the last run

Continue the optimization process from where it was left since the last calculation was requested. Will in-
ternally do all the updates that are possible until the moment some calculation of function/gradient/hessian-
vector is required.

Contents: 9



stochqn Documentation

Note: The first time this is run, no calculation needs to be supplied.

Parameters

* X (array(m, )) — Current values of the variables. Will be modified in-place. Do NOT
modify the values between runs.

* step_size (float) — Step size for the next update (note that variables are not updated during
all runs).

Returns

request — Dictionary with the calculation required to proceed and iteration information.
Structure:

e task : stt - one of “calc_grad”, “calc_grad_same_batch” (oLBFGS w.
‘min_curvature’ or ‘check_nan’),

“calc_hess_vec” (SQN wo. ‘use_grad_diff’), “calc_fun_val_batch” (adaQN w.
‘max_incr’), “calc_grad_big_batch” (SQN and adaQN w. ‘use_grad_diff’). * re-
quested_on : array(m, ) or tuple(array(m, ), array(m, )), containing the values on
which the request in “task” has to be evaluated. In the case of Hessian-vector prod-
ucts (SQN), the first vector is the values of ‘x’ and the second is the vector with
which the product is required. * info : dict(x_changed_in_run : bool, iteration_number
: int, iteration_info : str), iteration_info can be one of “no_problems_encountered”,
“search_direction_was_nan”, “func_increased”, “curvature_too_small”.

Return type dict

update_function (fun)
Pass requested function evaluation to optimizer (task = “calc_fun_val_batch”)

Parameters fun (float) — Function evaluated at “requested_on” under a validation set or a larger
batch, perhaps including all the cases from the last such calculation.

update_gradient (gradient)
Pass requested gradient to optimizer

Parameters gradient (array(m, )) — Gradient calculated as requested, evaluated at values given
in “requested_on”, calcualted either in a regular batch (task = “calc_grad”), same batch as
before (task = “calc_grad_same_batch” - oLBFGS only), or a larger batch of data (task =
“calc_grad_big_batch”), perhaps including all the cases from the last such calculation (SQN
and adaQN with ‘use_grad_diff=True’).

class OoLBFGS (x0, grad_fun, obj_fun=None, pred_fun=None, batches_per_epoch=25, step_size=0.001,
decr_step_size="auto’, shuffle_data=True, random_state=1, nepochs=25,
valset_frac=None, tol=0.1, callback_epoch=None, callback_iter=None, kwargs_cb={},
verbose=True, mem_size=10, hess_init=None, min_curvature=0.0001, y_reg=None,

check_nan=True, nthreads=-1, use_float=False)
oLBFGS optimizer

Optimizes an empirical (convex) loss function over batches of sample data.
Parameters
* x0 (array (m, )) — Initial values of the variables to optimize (refered hereafter as ‘x’).

o grad_fun (function(x, X, y, sample_weight, **kwargs) —> array(m, )) — Function that cal-
culates the empirical gradient at values ‘x’ on data ‘X’ and ‘y’. Note: output must be

10 Contents:



stochqn Documentation

one-dimensional and with the same number of entries as ‘x’, otherwise the Python session
might segfault. (The extra keyword arguments are passed in the ‘fit” method, not here)

obj_fun (function(x, X, y, sample_weight, **kwargs) —> float) — Function that calculates
the empirical objective value at values ‘x’ on data ‘X’ and ‘y’. Only used when using a
validation set (‘valset_frac’ not None, or ‘valset’ passed to fit). Ignored when fitting the
data in user-provided batches. (The extra keyword arguments are passed in the ‘fit’ method,
not here)

pred_fun (None or function(xopt, X)) — Prediction function taking as input the optimal ‘x’
values as obtained by the optimization procedure, and new observation ‘X’ on which to
make predictions. If passed, will have an additional method oLBFGS.predict(X, *args) that
calls this function with current values of ‘x’.

batches_per_epoch (inf) — Number of batches per epoch (each batch will have the same
number of observations except for the last one which might be smaller).

step_size (float) — Initial step size to use. (Can be modified after object is already initialized)

decr_step_size (str “auto”, None, or function(initial_step_size, epoch) -> float) — Function
that determines the step size during each epoch, taking as input the initial step size and
the epoch number (starting at zero). If “auto”, will use 1/sqrt(iteration). If None, will use
constant step size. For ‘partial_fit’, it will take as input the number of iterations of the
algorithm rather than epoch, so it’s very recommended to provide a custom function when
passing data in user-provided batches. Can be modified after the object has been initialized
(oLBFGS.decr_step_size)

shuffle_data (bool) — Whether to shuffle the data at the beginning of each epoch.

random_state (inf) — Random seed to use for shuffling data and selecting validation set.
The algorithm is deterministic so it’s not used for anything else.

nepochs (inf) — Number of epochs for which to run the optimization procedure. Might
terminate earlier if using a validation set for monitoring.

valset_frac (float(0, 1) or None) — Percent of the data to use as validation set for early
stopping. Can also pass a user-provided validation set to ‘fit’, in which case it will be
ignored. If passing None, will run for the number of epochs passed in ‘nepochs’.

tol (float) — If the objective function calculated on the validation set decrease by less than
‘tol” upon completion of an epoch, will terminate the optimization procedure. Ignored when
not using a validation set.

callback_epoch (None or function*(x, **kwargs)) — Callback function to call at the end of
each epoch

callback_iter (None or function*(x, **kwargs)) — Callback function to call at the end of
each iteration

kwargs_cb (tuple) — Additional arguments to pass to ‘callback’ and ‘stop_crit’. (Can be
modified after object is already initialized)

verbose (bool) — Whether to print messages when there is some problem during an iteration
(e.g. correction pair not meeting minum curvature).

mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

hess_init (float or None) — value to which to initialize the diagonal of HO. If passing 0, will
use the same initializion as for SQN (s_last*y_last / y_last*y_last).

Contents:

11



stochqn Documentation

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* y_reg (float or None) — regularizer for ‘y’ vector (gets added y_reg * s)

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

* nthreads (int) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be
parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables and gradient must be of this same dtype.

References
fit (X, y, sample_weight=None, additional_kwargs={}, valset=None)
Fit model to sample data
Parameters
* X (array(n_samples, m)) — Sample data to which to fit the model.
* y (array(n_samples, )) — Labels or target values for the sample data.
» sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

« additional_kwargs (dict) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

 valset (fuple(3)) — User-provided validation set containing (X_val, y_val, sam-
ple_weight_val). At the end of each epoch, will calculate objective function on this set, and
if the decrease from the objective function in the previous epoch is below tolerance, will
terminate procedure earlier. If ‘valset_frac’ was provided and a validation set is passed,
‘valset_frac’ will be ignored. Must provide objective function in order to use a validation
set.

Returns self — This object.
Return type obj

get_x ()
Get a copy of current values of the variables

Returns x — Current variable values.
Return type array(n, )
niter

partial_fit (X, y, sample_weight=None, additional_kwargs={})
Update model with user-provided batches of data

Note: In SQN and adaQN, the data passed to all calls in partial fit will be stored in a limited-memory
container which will be used to calculate Hessian-vector products or large-batch gradients. The size of this
container is determined by the inputs ‘batch_size’ and ‘bfgs_upd_freq’ passed in the constructor call.

Note: The step size in partial fit is determined by the number of optimizer iterations rather than the
number of epochs, thus for a given amount of data, the default step size will be much smaller than when

12

Contents:



stochqn Documentation

calling ‘fit". Recommended to provide a custom step size function (‘decr_step_size’ in the initialization),
as otherwise the step size sequence will be too small.

Parameters
* X (array(n_samples, m)) — Sample data to with which to update the model.
e y (array(n_samples, )) — Labels or target values for the sample data.
« sample_weight (None or array(n_samples, )) — Observations weights for the sample data.

* additional_kwargs (dicr) — Additional keyword arguments to pass to the objective, gradi-
ent, and Hessian-vector functions.

Returns self — This object.
Return type obj

predict (X, additional_kwargs={})
Make predictions on new data

Note: Using this method requires passing ‘pred_fun’ in the initialization.

Parameters
* X (array(n_samples, m)) — New data to pass to user-provided predict function.

« additional_kwargs (dict) — Additional keyword arguments to pass to user-provided pre-
dict function.

class oLBFGS_free (mem_size=10, hess_init=None, min_curvature=0.0001, y_reg=None,
check_nan=True, nthreads=-1, use_float=False)
oLBFGS optimizer (free mode)

Optimizes an empirical (convex) loss function over batches of sample data. Compared to class ‘OLBFGS’, this
version lets the user do all the calculations from the outside, only interacting with the object by means of a

s

function that returns a request type and is fed the required calculation through a method ‘update_gradient’.

Order in which requests are made:

loop * calc_grad * calc_grad_same_batch (might skip if using

check_nan)

Parameters

* mem_size (int) — Number of correction pairs to store for approximation of Hessian-vector
products.

* hess_init (float or None) — value to which to initialize the diagonal of HO. If passing ‘None’,
will use the same initializion as for SQN (s_last*y_last / y_last*y_last).

* min_curvature (float or None) — Minimum value of s*y / s*s in order to accept a correction
pair.

* y_reg (float or None) — Regularizer for ‘y’ vector (gets added y_reg * s).

* check_nan (bool) — Whether to check for variables becoming NaN after each iteration, and
reverting the step if they do (will also reset BFGS memory).

Contents: 13



stochqn Documentation

 nthreads (inf) — Number of parallel threads to use. If set to -1, will determine the number
of available threads and use all of them. Note however that not all the computations can be

parallelized.

* use_float (bool) — Whether to use C ‘float’ type (np.float32). If ‘False’ (the default), will
use ‘double’ type (np.float64). The variables and gradient must be of this same dtype.

run_optimizer (x, step_size)
Continue optimization process after supplying the calculation requested from the last run

Continue the optimization process from where it was left since the last calculation was requested. Will in-
ternally do all the updates that are possible until the moment some calculation of function/gradient/hessian-

vector is required.

Note: The first time this is run, no calculation needs to be supplied.

Parameters

* x (array(m, )) — Current values of the variables. Will be modified in-place. Do NOT
modify the values between runs.

* step_size (floar) — Step size for the next update (note that variables are not updated during
all runs).

Returns

request — Dictionary with the calculation required to proceed and iteration information.
Structure:

e task str - one of “calc_grad”, “calc_grad_same_batch” (oLBFGS w.
‘min_curvature’ or ‘check_nan’),

“calc_hess_vec” (SQN wo. ‘use_grad_diff’), “calc_fun_val_batch” (adaQN w.
‘max_incr’), “calc_grad_big_batch” (SQN and adaQN w. ‘use_grad_diff’). * re-
quested_on : array(m, ) or tuple(array(m, ), array(m, )), containing the values on
which the request in “task™ has to be evaluated. In the case of Hessian-vector prod-
ucts (SQN), the first vector is the values of ‘x’ and the second is the vector with
which the product is required. * info : dict(x_changed_in_run : bool, iteration_number
. int, iteration_info : str), iteration_info can be one of “no_problems_encountered”,
“search_direction_was_nan”, “func_increased”, “curvature_too_small”.

Return type dict

update_gradient (gradient)
Pass requested gradient to optimizer

Parameters gradient (array(m, )) — Gradient calculated as requested, evaluated at values given
in “requested_on”, calcualted either in a regular batch (task = “calc_grad”), same batch as
before (task = “calc_grad_same_batch” - oLBFGS only), or a larger batch of data (task =
“calc_grad_big_batch”), perhaps including all the cases from the last such calculation (SQN
and adaQN with ‘use_grad_diff=True’).

class StochasticLogisticRegression (reg_param=0.001, fit_intercept=True, random_state=1,
optimizer="SON’, step_size=0.1, valset_frac=0.1, ver-
bose=False, **optimizer_kwargs)
Logistic Regression fit with stochastic quasi-Newton optimizer

Parameters

14 Contents:



stochqn Documentation

* reg_param (float) — Strength of 12 regularization. Note that the loss function has an average
log-loss over observations, so the optimal regulatization will likely be a lot smaller than for
scikit-learn’s (which uses sum instead).

* step_size (float) — Initial step size to use. Note that it will be decreased after each epoch
when using ‘fit’, but will not be decreased after calling ‘partial_fit’.

* fit_intercept (bool) — Whether to add an intercept to the model parameters.
e random_state (inf) — Random seed to use.
* optimizer (str, one of ‘oLBFGS’, ‘SON’, ‘adaQN’) — Optimizer to use.

* optimizer_kwargs (dict, optional) — Additional options to pass to the optimizer (see each
optimizer’s documentation).

coef

fit (X, y, sample_weight=None)
Fit Logistic Regression model in stochastic batches

Parameters
* X (array(n_samples, n_features)) — Covariates (features).

e y (array(n_samples, ) or array(n_samples, n_classes)) — Labels for each observation (must
be already one-hot encoded).

o sample_weight (array(n_samples, ) or None) — Observation weights for each data point.
Returns self — This object
Return type obj
intercept_

partial_fit (X, y, sample_weight=None, classes=None, decr_step_size=False)
Fit Logistic Regression model in stochastic batches

Parameters
* X (array(n_samples, n_features)) — Covariates (features).

* y (array(n_samples, ) or array(n_samples, n_classes)) — Labels for each observation (must
be already one-hot encoded).

» sample_weight (array(n_samples, ) or None) — Observation weights for each data point.

* classes (None) — Not used. Kept there for compatibility with other packages that assume
scikit-learn’s API.

* decr_step_size (bool) — Whether to decrease or not decrease the step size after the update
is done, according to the function ‘decr_step_size’ passed at initialization.

Returns self — This object
Return type obj

predict (X)
Predict the class of new observations

Parameters X (array(n_samples, n_features)) — Input data on which to predict classes.
Returns pred — Predicted class for each observation

Return type array(n_samples, )

Contents: 15



stochqn Documentation

predict_proba (X)
Predict class probabilities for new observations

Parameters X (array(n_samples, n_features)) — Input data on which to predict class probabili-
ties.

Returns pred — Predicted class probabilities for each observation

Return type array(n_samples, n_classes)

16 Contents:



CHAPTER 1

Indices and tables

* genindex
* modindex

e search

17



stochqn Documentation

18 Chapter 1. Indices and tables



Python Module Index

S

stochgn._logistic, 14
stochgn._optimizers, 1
stochgn.tf, 14

19



stochqn Documentation

20 Python Module Index



Index

A

adaQN (class in stochgn._optimizers), 5
adaQN_ free (class in stochgn._optimizers), 8

C

coef_ (StochasticLogisticRegression attribute), 15

F

fit () (adaQN method), 7

fit () (oLBFGS method), 12

fit () (SON method), 2

fit () (StochasticLogisticRegression method), 15

G

get_x () (adaQN method), 7
get_x () (oLBFGS method), 12
get_x () (SON method), 3

intercept_ (StochasticLogisticRegression attribute),
15

N

niter (adaQN attribute), 8
niter (oLBFGS attribute), 12
niter (SON attribute), 3

O

OLBFGS (class in stochgn._optimizers), 10
OLBFGS_free (class in stochgn._optimizers), 13

P

partial_ fit(

partial fit(

partial_ fit(

partial_ fit (
method), 15

predict () (adaQN method), 8

predict () (oLBFGS method), 13

(adaQN method), 8
(oLBFGS method), 12
(

)
)
) (SON method), 3
)

(StochasticLogisticRegression

predict () (SON method), 3

predict () (StochasticLogisticRegression method), 15

predict_proba () (StochasticLogisticRegression
method), 15

R

run_optimizer () (adaQN_free method), 9
run_optimizer () (o0LBFGS_free method), 14
run_optimizer () (SQON_free method), 4

S

SQN (class in stochgn._optimizers), 1
SQN__free (class in stochgn._optimizers), 3
StochasticLogisticRegression

stochgn._logistic), 14
stochgn._logistic (module), 14
stochgn._optimizers (module), 1
stochqgn.tf (module), 14

U

update_function

(class in

() (adaQN_free method), 10
update_gradient () (adaQN_free method), 10
update_gradient () (oLBFGS._free method), 14
update_gradient () (SON_free method), 5
update_hess_vec () (SON_free method), 5

21



	Indices and tables
	Python Module Index
	Index

